The design and characterization of compounds which undergo excited-state intramolecular proton transfer (ESIPT) continues to engage the interest of scientists throughout the world. ESIPT processes are of great interest, since they appear to play an essential role in so-called photostabilizers, which are in widespread technical use for the protection of organic polymers against degradation by the UV components of sunlight. These compounds exhibit high absorption coefficients in the near-UV region and have a nondegradative pathway for rapid return to the electronic ground state. In one of the best known photostabilizers (TINUVIN), the photophysical cycle is completed on a subpicosecond time scale. 10-Hydroxybenzo[h]quinoline moiety is one of the best known chromophores, displaying ESIPT. As 10-hydroxybenzo[h]quinoline and other ESIPT chromophores possess a large Stokes shift and many important applications (like laser dyes, fluorescence recording, ultraviolet stabilizers, metal ion sensors, probes for solvation dynamics and biological environments, and recently organic light emitting devices) have been found for them. Consequently, one important issue regarding the ESIPT system lies in the wide tunability of the chromophore absorption as well as proton transfer emission. We envisage that the chromophore expansion would influence the ESIPT phenomenon. We anticipated that 12-hydroxy-1-azaperylene and other analogs of 10-hydroxybenzo[h]quinoline would display ESIPT with bathochromically shifted absorption and emission compared to parent chromophore.